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SECTION II..-.GENERAL METEOROLOGY.

ELEMENTARY NOTES ON LEAST SQUARES, THE THEORY
OF STATISTICS AND CORBRELATION, FOR METEOROLOGY
AND AGRICULTURE.
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Much attention is now being given by a few to the
application of the laws of probabilities and of the theory
OF statistics, least squares, and correlation to studies in
meteorology, especially in its relations to agriculture.
These mathematical agencies may be made very useful
to meteorologists and others in the analysis and compari-
son of the data of their respective sciences and in the
determination of possible relations between the several
phenomena or quantities they discuss.

The customary metcorological and climatie tables tell
us a great deal about the mean temperature and average
weather conditions of this or that locality and for the
several days, months, seasons, etec. The departures from
the normal, the extremes, and ranges of t.im. conditions
are also fully specified. Nevertheless, many realize how
these data often fail to bring out climatic characteristies
that impress themselves strongly upon our physiological
or psychological sensations. A possible explanation of
some of these anomalies may be found in recognizing that
the average temperature, for example, or the arerage con-
ditions of any kind are not necessarily the most frequent.
or the most probable conditions. The average or the mean
may be the most frequent in some localities or at certain
times and seasons, whereas it is entirely possible and in
fact quite probable that in another locality or on another
ovcasion the most frequent temperature may be cither
ahove or below the mean or normal.

The standard deviation is another mathematical concept
that may be employed to express a characteristic or
peculiarity of a given climate and likewise claims atten-
tion. Different localities and different elements may
show marked differences in these characteristics and such

differcnces can not fail to be accompanied by psychic and
physiological effects on man and by corresponding effects
on other organisms. All these climatic features and
peculiarities can be fully disclosed only by a proper appli-
cation of the laws of statistics to the severalp problems in
hand. Vast quantitics of suitable data are already avail-
able la.nd await analysis and discussion of the kind indi-
cated.

Many interesting questions may be answered with
assurance by means of the mathematical methods referred
to: for example:

1. In the long run, how many days in December at
Washington, for example, will the minimum temperature
fall below freezing ?

[Some will be content to count up the times for a series
of years. A far better result may be obtained, however,
by a proper application of the theories of statistics.]

2. What will be the most frequent temperature at a
given locality and for a specified interval of time %

3. Below what temperature will the minimum for the
day at a designated place and period of time be just as
likely to fall as not ?

4. How many times in a month will the temperature
be the same as the average ?

5. What percentage of maximum temperatures for a
given month and locality will be 10°, 15°, or 20° above
the normal ?

6. How do different localities differ in one or more of
the particulars indicated in the foregoing questions ?

7. Are differences in the particulars cited reflected in
the growth of crops or the welfare and comfort of indi-
viduals, and, if so, what are the economic and hygienic
aspects thereof ¥

eather conditions rainfall, river stages, crop yields,
and many other important phenomena of meteorology
and agriculture can be analyzed and set forth with advan-
tage by the mathematical methods indicated.

rof. Karl Pearson, of University College, London, has
done much to systematize and reduce to a practical work-
ing basis the intricate mathematical processes that must
be employed in order to reach exact and rational results
in the discussion of large groups of statistical data. His
important contributions to this science should be con-
sulted by every careful student.

Except for the safe and certain basis afforded by the
science of statistics for the risks of insurance, for example,
this great industry in all its manifold applications of the
present day would be either a costly investment to the
policyholder, or a losing venture to the compsny, and not
the perfectly safe and equitable businessenterpriseitnowis.

Biologists, anthropologists, and other students of
statistics generally now employ the exact mathematical
methods of this comparatively new science with great
advantago in their several fields of work. A few meteor-
ologists must also be mentioned in this list, but as yet
little has heen done, especially in American climatology
and agriculture,* to use this science to the fullest possible
extent in solving many of the practical probloms of ap-
plied meteorology and scientific agriculture.

1 Prol. W. J. Spillman has recently made important practical applications of statis-
tical theories to the problems of farm g 1t as dependent on weather factors,
His assistants, Messrs. W. G. Reed and H. R. Tolley, are also making investigations of
climatic and agricultural statistics from the mathematical standpoint, and useful results
niay;’ ;\ie expected. Sec MONTHLY WEATHER REVIEW, April, 1916, 44: 197; June, 1916,
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Many who are interested or eugaged in the study of the
data of weather, climate, and ecrops are bhut slightly
acquainted with advanced mathematics.  Such are fre-
quently dismayed by the formidable array of mathe-
matical symbols commonly employed to demonstrate the
theories of errors or variations and fail to follow and learn
the methods and processes by which these theories may
be applied in the solution of many practical problews.
Hence, it scems a useful purpose will o served by stating
in simple verbal termns, as far as possible, some of the goen-
eralizatious warranted by the more elegant mathematical
demonstrations and by illustrative examples of the
processes of computation indicated by the equations of
this branch of science.

With this ohject in view it is proposed to discuss
briefly several of the more or less technical terms now
in use and illustrate by simple examples certain important
methods of computing results.

FEXPLANATION O TERMS.

Average, mean, normal.—Mathematically, the quan-
tities to which these names are applied in dealing with
statistical datn are essentially the same, namely, the
quotient found by dividing the sum of a scries of values
by the number of vajues, In ordinary usage there is no
essential difference in the significance of average and
mean, although the latter sometimes means the value
midway between two extremes, whercas the average
has only the mathematical significance of the sum of the
observations divided by the number. The word rormal,
however, as used in meteorology, is supposed to have a
special significance, which can not be more precisely
defined than to say that it is the average value of a long
series of ohservations. Just how long the series must be
to make the average a real normal can not be known,
except possibly to say that the average hecomes the
normal when its value ceases to change appreciably with
increased length of record. This is altogether a ques-
tion of the importance or significance of small changes
in the value of the average. Notwithstanding its vague-
ness of meaning the word normol is a convenient one to
distinguish the average of a few results from the mean of
a considerable number, or even the greatest number of
values available.?

Ervors, residuals, depurfures.—These terms often have
a similar significance, but in other cases important dif-
ferences of menning must be recognized. All measure-
ments and observations of physical magnitudes, as also
the observation and determination of the elemental
terms constituting statistical data, show variations when
more than one observation or determination are made.
In general it is impossible to learn the true magnitude.
When used in its strictest sense, the word riror means
the difference between some particular observed value
and the true value of a datum. Sinece the true valime,
and therefore the true error, can perhaps never be
known, it is customary to adopt in place of the true
value some closely approximate, or best, or most probh-
able value. Carcful writers will then ase the wound
residual to mean the difference between some particular
vhserved value and the most probable value. The word
eiror, however, is often l(.mselly used to have the same
significance as residual.®

Errors and residuals may he considered as variations
of repeated observations or measurciments, from the true

2 On this subject of **mean’ and **average see also this REVIEwW, Jan., 1915, 43: 24;
Aug., 1805, 23: 204 —C. A. Jr.
3 Merriman, M. Method of leust squares. New York, 1915. p. 5.
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or the approximate value of a given magnitude which in
cfiect is assumed to remain fired and invarioble. While
the determination of each element of statistical data—
¢. g., the velocity of the wind, the temperature of the air,
the amount of vainfall, cte.—is, strictly, subject to errors
of observation, nevertheless such data are also subject
to an additional eause of varintion due to the progressive
and actual change in the true value of the wind velocity,
the temperature of the air, the rainfall, ete. In such
cases the arors of determination ean not as a rule be
climinated or separately analyzed, but they are gen-
erally small and insignificant in comparison with the
larger variations of thie elemental datum itself.

The term departire may be reserved to designate the
difference between the mean value and some one of the
values of a quantity which is morc or less continvously
changing its magnitude, It is not at all necessary, how-
ever, to form the departures with respect to the mean.
Indeed, it is genernhy easier and better to use some
arbitrary value, as the computations can thus be carried
out with greater facility and even more exactly. (See
p. 563.)

Errors and residuals represent inexactness and imper-
fection in determining quantities of a fixed magnitude.
Departures show the nature and amount of variations in
a quantity of changing magnitude.

Correctton.—The numerical value of a correction jn a
given case is always exactly the same as that of.an error
or residual, or departure, hut it has the opposite algebraic
sign. It is the quantity that must be added algebraically
to an obscrved value to deduce thereby the true or most
probable value. The word has no particular use in the
study of statistical data, but is explained here to bring
out the difference between corrcetions which are very
frequently employed in adjusting observations, measure-
ments, and data generally and the variations or departures
which constitute the ground work of statisties.

Deviation ix a word which is also used to refer to the
amount of departure from a mean or arbitrary base value.

Standard deviation 1s the name applied to a particular
value of the departures in a group of data and is exten-
sively employed in statisties as an index of the variability
of the group and for other purposes. Its importance or
uscfulness depends chiefly upon its mathematical signifi-
cance, as will be brought out more fully in what follows.

Probability curve.—A curve of the general character
shown in figure 1 and representing the law of frequency
with which errors or residuals of different magnitude oceur.
The height of any point on the curve above the bhase line
is proportional to the number of errors or residuals which
have the value represented by the distance of the point
from the vertical axis of symmetry.  Normal distribu-
tion, normal curve of errors are other names applied to
the probability curve.

Frequeney curve.—~A eurve exhibiting the law of fre-
queney of oceurrenee of departures of varions magnitudes
from a base or reference number. They curve may he
identical in character with the probability eurve, but
unsymmetrical curves of various kinds may also be
required to exhibit particular kinds of data, as will be
indicated later.

Distribution, frequency  distribution.—Expressions re-
ferring to the groupiug of departures as (l.x]hihil.-ed by a
frequeney curve or diagram. An ecasy and expeditious
muanner of charting a frequency distribution is the dot
system shown in figures 15 and 16.  'When the departures
have been culeulated the dot chart can be rapidly built
up and the result is graphic and effective. In fact, the
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chart is often just as easily formed directly from the
observations, thus reducing to a minimum the labor of
computing and tabulating nunerical departures.

Least squares, sum of squares.—These expressions refer
to the sum of the squares of the errors, or residuals, or
departures for a given group of data. The magnitude of
the sum will depend on the base numbher with reference
to which the departures are taken. Some one base num-
ber will causc the sum of the squares to be a winimum,
hence the expression ‘‘least squares.” When the data
represent physical measurements, that value which makes
the sum of squares the least is the most probable value and
therefore the most accurate value obtainable from the
data discussed. The arithmetical mean is the most
probable value in the case of observations of equal accu-
racy.

In dealing with statistical data the most probable
value does not have the significance of the most aceurate
value, but simply is the most frequent value. If the
“distribution”’ is unsymmetrical the arithmetical mean
will then no longer be the most frequent value, but some
other value will be the most frequent. The name maode
is now used to designate the most frequent value.

Probable ervor, probable variation.—These expressions
are mathematically identical, at least when the *‘distri-
bution' is normal, nevertheless there is clearly an appro-
priate distinction between them. The probable error
has reference to a group of measurements of ¢ fired quan-
tity and designates that error than which half of the errors
are greater and the remaining half are less. The probable
variation refers to the changing values of a -variab;e quan-
tity and is the name of that magnitude of the departure
which has the middle value, that is, half of the deviations
in a given group of data are greater, and half are less, than
the probable variation.

Variant.—This term is frequently used to designate in
a general way any group of data exhibiting vaviation. In
meteorology, for example, the rainfall fur a given period
and locality might he referred to as the varinnt, and a given
single value as « variant.

ELEMENTS OF THE LAWS OF PROBABILITY.

Let m =number of ways in which a certain simple event
can happen,

“n=number of ways in which the event can fail,
then

m +n=total numbher of cases that can occur.
If the probability that the event will happen be called p,
then

.

=,
. . oy s % .
Hu=0, p=_=1, that is, it is certam the event will hap-

pensinee 1 is the measure of certainty.

0 s . . .
If m=u, p= 7 =0; that is, it is certain the event will fail,
zero being the measure of complete failure.

If a compound event occurs when two or more simple
events happen together, then the probability of the com-
pound eveni is the product of the probabilities of the
simple events.

FRROERS AND THE METHODS OF LEAST

SQUARES.

THE THEORY OF

These expressions designate a group of theories and
mathematical methods bhased on the laws of probabili-
ties, all originally develored chiefly by astronomers,
mathematicians, and geodesists for the purpose of provid-

MONTHLY WEATHER REVIEW.

553

ing rational methods of comparing, adjusting, combining,
and harmonizing many different measurements or ob-
servations of one and the same quantity so as finally to
ascertain the best, or the most accurate, that is, the most
probable value that conld be deduced from all the observa-
tions.

This theory, however, has a far wider application than
simply to errors of mecasurement. In meteorology and
climatology it may be a valuable mathematical agency
for indicating the nature and amount of variation in the
data commonly discussed.

The theory of errors, in fact, deals with only one of the
special and relativelv simple cases that fall within the
domain of the more general theories embracing all classes
of statistical data subjeet to variations. The theory of
statistics is the general science.  'The theory of errors is the
special case.  (are must he excreised, therefore, that for-
mule and methods appropriate for the analysis and dis-
cussion of errors of measurements are not applied to data
whose laws of frequency and variation may be quite
different. from those upon which the theory of errors is
construeted.

It is also well known that the theory of errors—or ‘“of
departures from a mean ' as the theory might be called for
meteorologists—applies strictly only to a very large num-
ber of observations or values. The smaller the number
of cases the less reliable ave the deductions by this theory.
As already stated, the principles of the theory were for-
mulated with respect to errors of measurements and
observations; nevertheless, under proper restriction they
may also he applied to many studies and diseussions of
statistical data generally. In these latter cases the ques-
tion at issuc is not one of errors of observation,in the proper
senseof that expression. Meteorological observations and
statistical data generally are all subject to errors of deter-
mination or measurement, and it 13 often impossible to
adequately climinate these causes of variations from the
resuit-s under discussion.  Nevertheless the pure errors
of observation will often be small and in the application
of the theories now under consideration the ‘‘residuals’
will be depirtures from a mean value or arbitrary base
number and not errors of determination. The departures
represent chiefly the »ariutions in the values of a given
datum with respect to some average or mean value that
it may be convenient to employ as an arbitary reference
value, but includes nevertheless the actual errors of
ohservation.

Take, for example, the mean temperature of January,
or any other month for a long series of years, or, better
the mean temperature for any day of the year. This
datum tends to he a constant; nevertheless, values from
year to year differ more or less froin the mean, sometimes
righer, sometimes lower.  Some months or days and some
localities show greater variations than other months and
other localities. This variation is a more or less fixed
characteristic of the given month or of the locality and
some standard method of generally measuring and de-
signating such variations is needed. 'The method of least
squares supplies such a standard method or unit of meas-
urement of variation. This unit is known az the probable
error or, giving it a more appropriate name, the probable
rapiation.  The term standeard deviation is also a name for
another measure of this variation that serves to define
in exact measure the variation of similar climatic,
metcorcelogical, or statistical data to which the metheds
of least squares may be applied. These terms will he
described and defined more fully hercafter.

At the very outset of any general attempt to apply the
methods of least squares to some particular data other
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than to questiuns involving only ervors of ohservation,
it is highly important to make sure that the theory can
pro erﬁf be applied to the particular data in question
and in the manner proposed. Whether this application
can be made or not depends on whether the law of the
requency of occurrence of the large and the small devia-
tions from the mean in the data 1s the samne general law
as for errors of observations. That is, the extent to
which this application is justified depends on how closely
the so-called frequency curve for the data in question
corresponds to the frequency curve for crrors of observa-
tions. We must therefore recognize just what are the
characteristics and limitations of the normal curve.

Normal frequency curve.

The essential features of the law of frequency of occur-
rence of errors is represented by what is often called the
“normal frequency curve.” This law of frequency is
fixed by three principal conditions which must be satis-
fied, namely, (1) very small errors occur with the greatest
frequency; (2) very large ervors rarcly occur: (3) posi-
tive errors (values of the data in excess of the true value)
and negative errors (values less than the true value) are
equally numerous. This latter condition makes the fre-
quency curve symmetrieal about the central vertical axis.
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Fie. 1. Normalfrequency curve conventional). Dots represent ol'servations or values
assunied to 1e very numerous and crowded close together.

Figure 1 represents a normal frequency curve having
these characteristics. Each dot may be considered to
represent one ohservation or one value of the departure
from the mean, the aimount of that departure being shown
by the distance of the dot from the centralline. All the
dots comprise all the ohservations.

Scientists have determined that the normal probability
curve of the kind shown in figure 1 is best represented by a
certain exponential equation which written in a form
commonly found in the texthooks* is as follows:

e hE (1)

in which y represents the probability of a given value or
deviation from the mean represented by z. The quan-
tities = and ¢ are well-known mathematical constants,
namely, r=3.1416, the ratio of the circumference to the
diameter of circles and ¢=2.71828, the base of the
Naperian system of logarithms. These quantities arve the
same for all kinds of data whatsoever. The one remain-
ing factor & is a constant depending on the particular
data under discussion. This quantity h is sometimes
called *‘ the measure of precision.”

When £ is small the curve is low and spreads out later-
ally as @ or b in figure 7. For such a case the observa-
tions are inexact or the data vary greatly, and relatively
large departures from the mean oceur frequently. Such
data lack precision and exhibit wide variations. A large

¢ Comstock, George . Methods of least squares. Boston, 188g¢, p, 5.
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value of k&, however, signifies that the measurcments or
data are grouped clos:ly about the mean value, small
deviations are numerous and large ones seldom occur.
The curve in this case will have such a form as shown
at ¢ or  in figure 7.

According to equation (1) the frequency curve has
branches on the right and left extending to mnfinity, but
crrors or departures even approaching infinite magnitude
do not occur.  Ience we must recognize that equa-
tion (1) only approximately represents the real case in
nature. Nevertheless, the mathematical curve can be
made 10 lie so close to the base line as to practically coin-
cide with it at the limits of the range of data.

It was mentioned with respect to figure 1 that all the
dots comprise all the observations. In an analogous but
more generalized sense the entire area under the curve
including its branches to infinity, represents all possible
errors; and the area under the curve between any two
defining vertical lines in proportion to the whole area rep-
resents the probability of the occurrence of errors of
sizes hetween the defining lines.

When we undertake to study the variation of statis-
tical data generally, it is quite obvious we must expect to
find frequency curves widely different from the normal
error curve. Pearson and others have classified many of
these curves and determined their general equations. A
few cextreme types are selected here to illustrate the pos-
sibilities and are shown in figures 2-S.

e rr——

Fir. 2, Extreme asymmetrical frequeney curve. Tllustrates frequeney of deaths from
infantile divenses.

Figure 2 shows the extreme asymmetrical® type illus-
trating, for example, the frequency of deaths at different

. # Unfortunately the dosignation ‘‘asymmetrical” is frequently applied by high author-
ities to curves which are but slightly unsymmetrical. Clearnoss of expression and con-
sistency seem to justify restricting the use of «*asymmetrical * to cases of total absence of
symmetry, analogously with the application of **aperiodie’ to motions of harmonie
character but devoid of period. The word “unsymimetrical ” may then he employed
to designate frequency curves that are neither perfectly symmetrical, as in the case ol the
normal curve of errors, nor yet completely devoid of symmetry as in the case of the truly
asymmetrical curve,
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ages for certain infantile and children’s diseases, like
diphtheria, ete. A curve of this type shows also the dis-
tribution of wealth.

&

F16. 3. Unsymmetrical frequency curve.
Af,=The mean or average value.
AM=The median or value of middla magnitude.
AM;=The Mode, the mnst frequent value.

Figure 3 shows an unsymmetrical® curve representing
many classes of data, exhibiting varying (}egrees of
asymmetry. Such curves may be classified into several
distinet types according to significant mathematical
criteria distinguishing between their equations.

Skewness is another term employed to indicate lack of
symmetry in a frequency distribution.

Some kinds ot data are most conveniently analyzed in
classes or subgroups. For example, the different amounts
of rainfall at’a station may be s}mwn in half-inch groups.
In such cases a frequency diagram like figure 4 is called a
frequency polygon. In these cases the frequencies are
mmagined to be concentrated on the central ordinates of
the successive groups, and this method is frequently
spoken of as the method of loaded ordinates. Another
illustration of a diagram of this character is found in
figure 1S. The same data may he represented also hy a
system of rectangles like figure 5, which is sometimes
called a histogram.

0 SN

Fia. 5. Afrequency diagramontlinedhy
rectanglessomelimescalled a histograni,

Fia.

4. A rreclulenc_v polyeon exhil iting
the irregu

arities of actual data.

Figure 6 is an unusual type of frequeney curve drawn
from climatic data and showing the frequency of esti-
mated cloudiness at Breslau® during the 10 years 1876-
1885. A completely clouded sky is the most frequent
condition, while a perfectly clear sky is the condition
next in order of frequency. Intermediate percentages
of cloudiness are more rare.

Properties of the probability curve~The normal error
curve has o number of interesting properties, some of
which will be briefly considered.

The fundamental cquation of the curve is

(1

¢ Yule, G. Udny. An introduction to the theory of statistics. T.ondon, 1912, p. 103,
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Since 7 and ¢ have the same values for all kinds of data,
and since we may, if we desire, use the same scale for z
in representing different classes of data, it results that
a family of curves such as shown in figure 7 suffices to
represent every possible group of data that can be rep-
resented by the normal frequency distribution. Each
curve represents a given group of data with a corre-
sponding value of k.

Fi6. 6. Unusual frequency-curve representing cloudiness.

The curves in figure 7 were drawn from the data in
Table 1, below, giving values of ¥ for a series of values
of r in equation (1) and various values of . The loga-
rithmic form of equation (1) is employed for ecusy compu-
tations, thus:

h _pep )
9y = —-'-'-e ezt or log y=1lo _7:7 —h¥*flog e.
. _‘/; = g —\/1r g

. h . .
Putting log ﬁ_——“ and loge=b, we get the simple

equation
log y=a—ba* (1a)
If a caleulating machine of the “Brunsviga” type is
availuble, values of the second member of the equation
may be rapidly computed by first setting up « in the
product roll, then b in the number roll; finally the suc-
cessive substraction of b4 from a by properly operating
the machine for successive values of #, gives values of log
¥ dircetly in one operation.
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TABLE 1.—Talucs of 2, b, and y. for valucs of x und different values of h, computed by equation (1n).

X
h ] b T
0 [ N n 15 o) 30
¥ v y y
0.05 0, 00108 0. 0252 1% N_024t) N0 0, 005
0.10 0. 004834 0.0564 n. S 1010
0.15 Q.00077 108146 th, 1]
0.0 0.01737 0, 1128 n, 7
0.25 002714 0.1410 0. 0.00%
0.30 0.03%)49 0. 1593 0.
0.35 0,.05520 | 0,197 0. (LT3 I P
0.40 | 9.45 0. 05049 0.:2057 1 0. 0.0007
0.45 | Q.4 0.05791 02539 | 0. 0. 10
0.50 [ 9.45040 | 0.10357 | 0.2%821 0.1035 | o.ooa2 | oooos oo e

Arca of normal error curves.—It was pointed out in  0.005x1=1/200. Henee there will prove to be the
connection with figure 1 that the dots comprise all the equivalent of just 200 small rectangles under cach curve.
observations, and as these frequency curves are always Sinee the area of a curve represents the probability of
assumed to apply exactly only to very large numbers  all possible departures, so likewise the fractional area
of ohservations, 1t is customary to think of the dots as  Detween ordinates represents the probability of depar-
being extremely numerous and crowded very closely tures lying between the limiting ordinates.
together, so that, in fact, the ¢ree under any particular

curve, including its branches to + and — infinity, rep- The probable error.
resents every possible error or departure from the mean
that can occur. Since every possible value of the dc- Mention has already been made that & in equation (1)

partures is certain to occurin the long run, and since 1 s is called the measure of precision. Its use, however, for
the symbol of certainty, it must follow that the arca this purpuse scems to be confined almost exclusively to
under any one of the error curves should be exactly  abstract mathematical discussions of equations of proba-
unity; also that all the curves should have the same area. bility. Astronomers, physicists, and others engaged in
This may be proved to be the case by the methods precise measurements almost universally employ the
of the caleulus, but the fact may also he approximately  probablc error as a measure of precision or index of vari-
verified by counting the small rectangles under any of ability of their work.

the curves in figure 7. On the scale of that diagram the The probablc error or probable variation is that value
arca of one of the little rectangles has the value of the ‘departure that is just as likely to be exceeded
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gs not. It bears the same reclations to the other errors
that the median does to the original data; hut the probable
variation must not be confused with the median, as the
two are wholly different. Half of the departures ave
equal to or greater than the probable departure and the
remaining half have an equal or less value.

Every frequency distribution has two probable vari-
ations—one with a positive and the other with a
negative sign. If the frequeney distribution is normal
then the numerical values of the two probable variations
areidentical. The probable variation ordinates +E, - 15,
in a frequency diagram, divide the area into three parts
as in figure 8. The area hetween the ordinates is equal
to half of the whole area and also equel to the sum of
the areas of the remaining portions.

In skew or unsymmetrical distributions the probable
variation as a value loses the significance assigned to it
just above. In such a case the probable variation is
simply the probable variation of a normal error curve of
best. fit to t}m particular group of skew data.

The probable variation is a measure of the amount of
variation or disagreement in the values under discussienm,
When applied to measurements it is an index of accuracy.
The smaller the probable error the greater the acenracy.
When applied to data, the smaller the probable variation
the smaller the dispersion or variation of the data from
the mean.

Authorities give slightly different formulae for com-
puting the probable wariation or probable evror.
E. Hooker (Quart. Jour., Roy. Met. Soc., 1908, 34: 2581
gives the value of the probable variation as two-thirds
the standard deviation. Ywle (Theory of Statistics,
pp. 306-307) places the value of the probable error at
~

E=0.67450=0.6715

Daven port (Statistical Methods, 1915, p. 15) gives essen-
tinlly the same value.

These formulee may properly be applied when a large
number of observations, n, is available; but the result is
inaccurate for small values of » because the formula is
deducéd under mathematical assumptions that Zi* rep-
resents the sum of squares for a large number of wvari-

ations, When these requirements can not be regarded
as satisfied, it is customary to use the following formula:
o
E=0.6745 =1

(See Merriman: Method. of least squares, 1915, p. 70.)

Astronomers, physicists, and others engaged in - aceu-
rate measurements usc the probable error frequently.
Statisticians, however, and others engaged in like studies
rarely use either the probable variation or the measure
of precision as an index of variability, but cmploy a still
different measure to indicute the characteristic deviations
or dispersion of any given data. This measure is called
the '‘standard deviation.”

The standard deviaiion.

Those values of the departure which locate the points
on a frequency curve where the curvature changes from
convex to concave, that is, puints of inflection, are
values of the standard deviztion.  Like the probable vari-
ation, the standard deviation has positive and negative
values which are numerically equal for nornl distribu-
tion. The Greek letter small sigma (o) is commonly
employved to indicate standard deviation. When the
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standard deviation is computed for an unsymmetrical
distribution of data, its significance is enly that of the
standard deviation for the normal error curve of closest
fit to the particular data. See +0 and—o in figure 8.

The facility with which values of the standard devia-
tion may be computed for a given set of data makes it a
very convenient measure or index of variability and
partly explains its adoption for this purpose.

Fraluation of h.—In equation (1) y is the probability
(certainty being 1) that any given departure » will occur.
In statistical work the awmdbor of departures of a given
alue, not its probability, are generally desired.  The
change in (1) necessary to obtain this result is easily
effected.  If 4, is the number of departures of a given
value, x, and #u is the total number 0} values or observa-
tions, then the probability of & is w,/n=vy, which sub-
stituted in (1) gives

Un ~ 2 e, &)
™

In textbeoks on the methods of least squares it is
proved that for any given group of n variants cenform-
mg te the nomwal frequency, the value of 7 is given by
the expression

n .
vizv (3)

i o

h=

in which =% is the sum of the squares of all the departures
from the nican.
It is also proven that the standard deviation, o, is

o= \/ En—-_ . 4)

L T 5
0'1/21!’ (3)

Un=

This form of the equation in units of the standard devia-
tion is the one commonly employed in statistical studies.
A still further simplitication of the equation may be

. noo. .
made. The expression e 1 the value of the maxi-
VT

mum ordinate, y,, that is, the value of y, when x=0.
Let
n I
9, = —== and also let X*="5:
o U’V“

then substituting these values in equation (5), the latter
may bhe written

e —iXE
WYalta= Y =¢

This is the completely generalized equation of the normal
frequency curve. The ordinates, g are measured in
units of the maximum ordinate and the departures or
abscissee, X, are measured in units of the standard devi-
ation. In this form the equation is applicable to every
vossible group of data conforming to t.Ee normal distri-
pution. The logarithmic form of the equation is

_loge

. ‘Y'-' == - (_).217].4:54\:2-

Y = —m e
2
-~

log 3}
Adding and subtracting 10 to the second member gives
log ¥ =10—0.217145.X3— 10, (6)

which puts the value of log Y™ derived from the equation
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in the form in which logarithms are commonly tabulated.
Figure 8 is the graphic representation of the equation (6).

Tables ¢ of values of Y} obtained by this cquation are
to be found in many of the standard works on least
squares, ete.

When X'=5, Y is less than oune part in 100,000,
While the lateral branches of the curve extend to + o,
the actual extension heyond X' =+ 5 is therefore almost
inappreciable.

The following values serve to plot the curve shown in
figure 8.

X o .2 .4 .5 1.0 L5 2.0 3.0 4.0 5.0

I
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Fi16. & Completely generalized normal frequency curve, =i

The probability integral—The methods of calculus
‘provide means for evaluating the arca of the gencralized
robability curve and tables of this area, otherwiso
suown as the probability integral, have been prepared.
Such tables ¢ in conjunction with tables of 3™ mentioned
in the preceding paragraph are of great sorvice in answer-
ing many important questions in probabilities.

Most  probable departure; the mode.—In any Ire-
quency distribution that value of the varient which
occurs most frequently is commonly called the mode (cf.
the fashion). In the rormel distribution, a zero depar-
ture is the most frequent, consequently the average value
is the most frequent valne.  In the case of so-called skew
variations or wnsymmetrical frequeney curves, however,
the mode and the arithmetical mean differ morve or less,

The median.—This name is applied to the middle value
of a series of variants when arranged in order of their
magaitude. Half of the values of the variant are equal to
or greater and the remainii:g half are cqual to or less
than tho median. In data couforming to the normal
distribution the moan, the mode, and the median all have
the same value. In the case of skew variations the
three values differ more or less as indicated in fignree 3
aud the median in such cases abways Les between the
mean and the mode.  According to Pearson 7 the median
is roughly one-third of the distance from the mean to
the mode as measured on the axis of V.

8 Dyeenport, C. B. Statistical Methods, 1914, Tables IIT and IV,
Sheppard, 1. F. New tables on the probability integral. Biom., Feb. 1903, 2; 174.
7 Pcarson, K. Varlation of theegg of thesparrow. ., ., Biometrika, 1, January, p. 2t1.

MONTHLY WEATHER REVIEW.

Ocrtoger, 1916

PROCEDURE IN STATISTICAL STUDIES,

Data undergoing study and investigation should first
bo plotted, if possible, upon some appropriate system of
coordinates, Plotting should bhe recognized as an indis-
pensablo step in the search for relations between observed
phenomena supposed to he dependent on each other
or similarly inHuenced by a  third condition. The
degree of interdependence, as well as the character of the
relation (as mathematically defined), is indicated by the
consisteney with which the plotted data aligns itself to
some recognized mathematical line or curve. Students
are often content to stop when a smoothed, hand-drawn
curve has been constructed to represent results, and
often our meager knowledge of the problem affords no
other course. In many ecases, however, the mathe-
matical law of relation is fully known, as well illustrated
by the normal frequency curve, for example. In all such
cases the work should not bhe regarded as finished until
the cquation of the best fitting line or curve has been
evaluated. Such a mathematical curve is far superior
to the smoothed, hand-drawn curve, for which the student
has no hotter guide than the limited and probably im-
perfect data hofore him. The mathematical curve not
ouly fits all the data the hest possible, but defines the
general law to which the observations are helieved to
couform more and more closely as their number and
accuracy inerenses, '

Monnents of curves.—The mathematicians have bor-
rowed from the physicists and have applied to the solu-
tion of statistical problems the idea of moments taken
from mechanies in which the product of a given quantity
(usually a force) by a distance from an axis or origin is
called a moment. The first momeni, commonly (Tesig-
nated, », of a group of statistical data comprising n
values is in reality simply the algebraic sum of all the
departures from the mean or some convenicent reference
value, divided by n; the second momend, v,, is the sum of
the squares of the same departures dividcd by n; the
third moment, vy, is the sum of the cubes divided by n, and
80 on. Stated in this form the idea of moments as a
product does not seem to enter. If, however, f, is the
frequency, that is the number of departures, all of the
same value r, then fr represents the sum of those depar-

Sfx . - . .
tures and =~"=yp_ is the first moment of the data, simi-
. 1
fa . Sfad . .
larly ==, s the second moment, ==y s the third

moment, and so on. The analogy to moments is here
clearly apparent.

Each mathematical curve also may be conceived to
have moments similar to those above for the data. Such
moments are commonly designated by the symbol u and
must be capable of caleulation fromn the equation of the
curve.

Mathematical eurve fitting.—The completion of almost
every study of statistical data, as well as of observations
and measurements, leads finally to adjusting a particular
mathematical curve represented by an cquation to fit a
given group of data. This requires the evaluation of the
constants of the equation so as to secure the best possible
fit. 'The methods of least squares provide certain definite
processes for accomplishing this result by the formation
and solution of so-called normal equations. These
methods define the curve of best possible fit to be one for
which the sum of the squares of the residuals (the observed
values minus the computed values) is a minimumn. The
solution of the problem in some of the more complex and
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difficult cases by the methods of least squares is at times
impracticable or even impossible, and Pearson?® has
developed and applied the method of moments to curve
fitting. By this method the area under the mathematical
curve is equated to the area represented by some smooth
curve passing through the observations. In addition, one
or more successive moments of the curve (expressed in
terms of the constants of the equation) are equated to the
corresponding mon:ents of the data. A sufficient number
of simultaneous equations is thus obtained to evaluate
the constants of the mathematical equation.

The methods of moments and of least squares are
identical when employed in fitting parabolic curves of
any order to observations, but the solution by n:oments
in the case of exponential and other transcendental
equations, a number of which are indispensable in sta-
tistical studies, offer important advantages. At the
best the processes are complex and tedious, but must be
mastered to a certain extent by those students in these
fields of inquiry who would attain the highest results.

Fi1a. 0.—Tlustrating straight lines and their equations.

A few of the multitude of mathematical equations
that are likely to he cmploved to represent relations
in statistical studies may be briefly noticed. Examples
llustrating the least square methods of finding the most
probable value of the constants in a few cases will bhe
given later.

xe

o Q)

Y= e
Yn=7, ‘/2';;

This apparently complex exponential equation for the
normal frequency curve iz very inrportant and particu-
larly interestiug as it really contains but one undeter-
mined constant. The most probable value of this may
be very easily found for a given set of data.

Y= (a)
y=Dh {b) (8)
Y=a+byu (e

These are equations of straight lines—ia) through the
origin inelined 45°, (b) through the origin inclined at

8 Pearson, K. On the svstematic fitting of curves to ob-servations and measurements.
Blometrika, April, 1902, 1:265.
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some other angle. Equations (a) and (b) are the kinds
of equation ohtained by caleulations of the correlation
coefficient, as will be shown later. Perfect correlation
gives equation (a). Imperfect correlation leads to two

equations of type (b, viz: x=rZy; y=r"r. Equation
C. o.

. . . . v, z ..
{(¢) is an inclined line cutting axis of » at distance a.
(fig. 9.)
y=a+br+ea? (9)

The parabola has san equation representing a number of
important physical laws and capable of being fitted to
many groups of data, especially for limited ranges and
where the Iaw of relation does not involve points of inflec-
tion; that is, points at which the line changes its direction
of curvature from concave to convex. Parabolic equa-
tions of the third and higher orders are frequently em-
ploved to represent more complex curves. In its gen-
era] form the equation is

(10)

This form of equation is better known as the Maclaurin
cxpansion.  The addition of higher powers no doubt
increases the clasticity of the curve, so to speak, and
enables it to adjust its curvature to {it the observations,
but a careful inquiry to ascertain the real physieal nature
of the relations it s desired to represent may lead to a
form of equation with fewer terms that gives a hetter fit.
So much depends on the proper choice of equation
that remarks by Pearson® on this subject may be quoted
here:

The husty assumption of some phy=icists and many engineers that a
paralol of the jurm

¥ = ¢yt-epr et et - -

is always a good thing, is to be deprecated as may be seen at once by
vongidering what a poor fit is obtained in this way to material really
expressed by such curves as

y=a+bx+e +dr*+ - -

i = Yy~ y =y, sin nr, ylote)=">»?, ele.

To assume a curve of this forin we must show the rapid convergency
throtughout the propused range of the Maclaurin expansion, and this is
not always feasible.

We dind physicist and statistician remarking that *‘the increased
accuracy of the result obtainalle by least squares would not he an
adequate return for the labor involved,”” and theun falling back on
some more or less questionable process of determining the counstants.
This process may be graphical or arithmetical, but it is usually unsys-
temalic in character and elastic in result.

After fitting once of his skew frequency equations of
pr

X e .
the form y =y0(1 +<-i) e % also a series of parabolas up

to the 6th order, to a group of data he remarks:

The table comnpares these results with the successive parabolas up
to the sixth aud shows how a well selected curve with three constants
can easily be superior to one with seven constants.  This point is of
special importancs, {or ohjections have heen raised against the skew
frequency curves just referred to on the ground that they give better
{its thau the normal curve because they have one or two more con-
stants as the ease may he.  This is true; but they also give hetter fits
than some other curves with double their number of constants!

ry=a° 1
ay = +br+ecyf (11)

The curves represented by these equations are of
hyperbolic type with intinite branches at right angles to
each other. In the first, the branches are asymptotic to
the axes (that is, approach and meet the axes at in-

v Biomaetrika 1: 266, 267, 293,
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finity), in the second the asymptotes are at distances
% and a’?from the axes.
(12)

This represents one of many forms of exponential equa-
tions. Its logarithmic form is,

,y=aeb:

(13)

log y=a,+bx

in which ¢, =log ¢ and b, =5 log e.

Much careful attention must be given to finding the
best values of the constants of such equations so as to
properly fit the data. The textbooks should, but do
not emphasize the fact that the least square methods
ordinarily employed to determine the most probable
values of @, and &, in equations like (13) may in the casc
of inexact data lead to an equation that fits the observa-
tions wretchedly.

The matter 13 too involved to dizcuss in the present
paper.

(14)

Data which exhibits periodicity may be represented
best by trigonometrical equations lke (14). Addi-
tional terms with successive multiples of the angle
may be added for more complex forms. While theo-
retically such an equation with sufficient terms can be
made to represent any periodic curve whatsoever or
fragment thereof, the work of harmonie analysis and
curve fitting of complex curves like the tides, ete., can
be successfully carried out only with elaborate instru-
ments which have been invented for the purpose.

y=a-+b sinnr+e¢ cosne+, ete.

CORRELATION.

Having plotted his data the student may select (rom
the several types of equations indicated in the fure-
going the one llle judges will best represent his problom
and compute the constants thereof, thus sccuring the
most definite and exact measure ol relation possible
between the quantities under consideration,

The procedure just described of plotting and curve
fitting has to do with correlation i the highest sense
of that word. Nevertheless, that definite procedure
can not always be carried out satisfactorily, and the word
correlation has come to be applied to a particular process
of discovering intervelation of a {imited character be-
tween statistical data in eases in which it may be uncer-
tain even that any relation exists. Iagerness to uiilize
any mathematical process to aid in resolving the per-
plexities of the interrelations of groups of statistical
data of all kinds may have led some, belore examining
the actual mathematical significance and hasis of the
coefficient of correlation, to form an exagoerated esti-
mate of its value and possibilities. The lollowing
quotation from Yule! indicates clearly the exact nature
of the problem and the purpuse served by the correia-
tion coeflicient.

The complete problem of the statistician like that of the physicist

is to find formulz or equations which will suffice to deseribe approxi-

mately these curves,

In the general case this may be a ditieult proddem, Tat in the fivst
place it often suflices, as already pointed ont, to know merely whether
on an average high values of the one variable show any tendeney to b
associated with high or with low values of the other, a purpese which
will be served very fairly by fitting a straight line; and, further, in o
large number of cases, it is found either (1) that the means of aruys
lie very approximately round straight lines, or (2) that they lie so
irregularly (possibly owing only to paucity of vbscrvations) that the

WY ule, 2. U, Introdnetion to theory of statis'les, p. i,
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real nature of the curve is not clearly indicated, and a straight line
will do almost as well as any more elaborate curve. In such cases—
and they are relatively more frequent than might he supposed—the
fitting of straight lines to the means of arrays determines all the most
important characters of the distribution. We might fit such lines
by a simple graphical method, plotting the points representing means
of arrays on a diagram like those of figures 36-38, and “*fitting” lines
to them, say, by means of a stretched black thread shifted about till
it appeared to run as near as might he to all the points. But such a
method is hardly satisfactory, more especially if the points are some-
what scattered; it leaves too much room for guesswork and different
observers obtain very different results. Some method is clearly
required which will enable the observer to determine equations to the
two lines for a given distribution, however irregularly the means may
lie, as simply and definitely as he can ealeulate the means and standard
deviations.

The function of the corrclation coefficient is therefore
clearly defined, nanely, that of an mdex of the extent
to which the relation between certain dJdata may he
represented by a straight line. A low correlation coefli-
cient must not be interpreted to mean no relation neces-
sarily, but that if a relative exists it is not well repre-
sented by a straight line.

In the search for a relation between two variables,
three steps are possible: (1) To plot the data, selected
and arranged in the manner to bring out best any rela-
tion that exists. This relation will he indicated by the
alignment of the dots or points along some recognized
line or carve. (2) We may proceed at once by least-
square methods to find the equation of the plot, be it
cither o straight line or curve; or (3) concluding from
the graph that a relation is apparent and that it can be
represented by a straight line quite as well as by any
curve, we may proceed at once to compute the cor-
relation coefficient.

The first step is practically indispensable. When the
second is performed the relation between the variables is
defined and formulated in the most positive and com-
plete manner. Nothing further is m:-.m{(-‘.(.l, for the reasons
stated in the quotation from Yule. 'The correlation coeffi-
cient should, however, always be computed when the
plot shows that a linear relation suffices and when for any
reason the detinite equation contemplated in the second
st-o.}) is not computed,

The eorrelation coefficicnt  is given by the equation

r=-B o G0)
g0, MNO0,
- 2.
:(T“’—) is the sum of the products of the departures of «

from its mean multiplied hy the departure of the corre-
sponding y from its mean—all divided by the number of
pairs n,  The expression o, is the standard deviation of
the © departures; o, is the standard deviation of the »
departures.

The following note by J. Warren Smith is of interest:

Yulue uf the eorrelation eotflicient.—In the past 10 years the writer has
used the correlation coefficient as a practical method for showing the
measure of the cffect of the rainfall and temperature for delinite periods
and areas upon the yield of various crops.

The practice has been to lirst test the possible relation between the
factors by means of the dot chart or eurve chart or by some of the other
recognized methods of sampling.  During this time nearly 1,000 cal-
culations have heen made for the correlation cocfticient. and no case
is reculled when a low coeflicient was found to he due to the law of
relation being nonlinear.  In every instance when using the dot chart,
where there was a scattering of the dots, there was a low coeflicient,
and whenever there was a high value the dots were grouped around a
fairly dingronal straight line.  The dot chart may be made from the de-
parture values or, what is still hetter, from the actual figures without
the extra work of ubtaining the departures from the normals,

Wl U7,
1)l {4

Intreduction to the theory of statisties. 1910, p. 171, Equations
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Figure 10 is an example of the simplest method of determining by
the dot chart whether the relation between two factors is linear. This
chart shows the relation between the average rainfall for the States of
Indiana, Illincis, Iowa, and Missouri during the month of July and the
average yield of corn per acre. In this case it will he seen that there is
a fairly regular increase in the corn yield with an increase in the rain-
fall, and while there may be a slight tendency to a decrease in yield,
with the greatest rainfalls, nevertheless this is not significant. My
value for the correlation coefficient was +40.61+0.08.
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Fii;. 10. Dot chart of data on the rainfall and e $seti ol colion che States of luwa,
Missouri, Illinois, and Indiana. Also straight line of closest fit,

Figure 11 indicates the position of the dots when the line of closest fit
is nearly parallel with one of the axes—in this case, with the axis of
abscissze. The correlation cocflicient from thiz calculation is only
—0.14, thus agreeing with the promiscuous scattering of the dots.
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¥ig. 11, Dot chiart of vield of potatoes and temperature incicating e or noe welation
Lecause straight line of approxiinate fit is nearly or guite parallel to one axis.

Figure 12, on the other hand, shows at once that one may expect a
high correlation coeflicient value, but instead of a straight diagonal
line from the intersection of the axes being the clusest tit, the line mns
from the extremes of the axes. This shows that the correlation coefti-
cient will have a minus sign, because as one factor increases the other
decreases, instead of huth increasing together as in figure 10. This
figure shows the relation hetween the mean temperature for the month
of July and the average yield of potatoes for the State of Ohio, * * *

The writer hegan the use of this method of studying the relation -
tween weather and crop vields ag an experiment, not knowing that it
had ever hefore Leen used for this purpose.  We have since then, how-
ever, learned that Mr. G. Udny Yule and Mr. R. Hooker had already
recognized its value in this connection and had used it extensively,
We wish to strongly urge the continuation of the use of the eorrelation
tahle in studying weather and crops. with proper preliminary examina-
tion, until some better method has heen evolved.—J. Wwren Swmith.

Emphasis has been laid on the necessity of limiting the
application of the methods of correlation only to data in
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linear relation. The following values of & and ¥ represent-
ing points upon a parabola were submitted without ex-
planation, to have the coefficient of correlation com-
puted.
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T 13, Dots on parabolie curve,  Coeflicient of correlation is very ncarly zero, 1 ceause
data ean not I.e represented by a straight line,
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The correlation coefficient was found to be — 0.0048
showing no relation. The points are shown in figure 13.

A still more interesting case has been worked out hy
Mr. W. G. Reed, of the United States Office of Farm Man-
agement, who has analyzed data on the tides and phases
0? the moon.

A coeflicient of correlation may he near zero when there ig very close
relationship, as is shown in such a condition as the relationship hetween
the height of high water and the phase of the moon which is shown for
Old Point Comfort, Va.. figure 14. The tigure indicates that the rela-
tion ig harmonic. Although there is a close and very definite relation
between the phenomena, the coeflicient of correlation is near zero
(0.106+0.088) because the different portiuns of the curve of relation
are such that a straight line along an axis will most nearly satisfy all
the points. Of course, the angle is then zero and its tangent is zero.

PREDICTED MEIGHT OF THE HIGHER MIGH WATES FOR EACH DAY AFTER NEW MOON
WITH PEFERDNGE TO MEAN HIGH WA'CR (MW}, AT OuD PUINT CUMIDRT VA
US Cors? ond Sesir s Sues v, Semerus Tidn Tokit i ¥3r Pe peve 194 8070

Agtl
-2 0.
MW Fos

s

Fi)
DAYS AFTER NEW MOON - JULY £9,(916

33, L1

Fra. 14. Tidal data and phases of the moon with very definite relation Lat low valie
of coetlicient of correlation.
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each station. The accuracy of the data is not now a
question, as its present purpose is to serve simply as an
example.

The relatively small amount of data as well as the inexact manner
of its compilation and the tendency of climatic data tn exhibit wide
Auctuations cause marked irregularities and ahnormalities to appear
in these frequency polygons. even when several hundred observations
are available. The data for Springhield show more dispersion than
those for Fresno, with a slight excess of positive departures. The
negative departures are in excess for Fresno and there the departures
show noticeably less dispersion. More observations are required to
determine whether or not these features are real characteristics of the
climate of the two stations or are due to errors from dropping decimals
and other accidental causes incident to the method employed in form-
ing these particular departures. These matters, however, need not
voncern U8 now, az our present object is to illustrate methods rather
than establish definite facts.

We, therefore, simply combine the two sets of data
into one set by addition, obtaining the results shown in
Table 2 and figure 17. In spite of some lack of symmetry
and a few marked abnormalities we regard the frequency
polygon as quite satisfactory and characteristic. Assum-
ing that a mathematical equation like (1) best represents
the law of frequency of these data, it remains only to
find the equation of the curve of best fit; that is, to find
the value of & in (2) or ¢ in (5) corresponding to the 731

35

| -T71
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25
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15
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-20 - 10 (o] +10 +20

F16. 15, Dot chart of frequency of departure of July daily mean temperature from
norinal for many years for Springiield, IiL

These illustrations are given to show the importance
of the proper use of the correlation method of mmlysis and
should not be construed by the reader as discrediting the
value of the principle when employed in a legitimate and
intelligent manner.

EXAMPLES.

The examples given below are selected to illustrate the
ractical application of the principles ]l)rcse.nt-e.d in the
oregoing and give the student a fuller idea of the details

of solving actual problems.

Erample 1.

Normal frequency curve representing departure of
daily mean temperatures from the normal or average
for the day. Data selected from observations at Spring-
field, Iil., and Fresno, Cal., for months where the average
for the month was very nearly normal.

Figures 15 and 16 ilustrate by dots the departures
from the normal for each day for a year’s observations at

-20 -10 (o] +10 + 20

Fi. 16, Dot chart of frequeney of departure of July daily mean temperature from
nortml for many yeurs for Fresno, Cal,

values of the temperature departure data. Fortunately
this is done very casily, by simply calculating ¢ from
the standard deviation equation (1),

N
R

N TH

M

.

Sy

x

o < 10 = 20

X
Fi1G. 17. C'ombined rrec}ueucies of Springfield-Fresno temperature departures and the
normal [requency curve of best fit. (See equation 16.)
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Practical calculation of the standard deviation.—Table 2
gives the data and steps in the computation in full. The
calculation is such an important one on account of its
frequent occurrence in physical and statistical work that
it justifies special notice,

In equation (1) on page 557, Sigma z* (Z¢) must
represent the least sum of squares. ~As already explained
this sum will be the least only when the departures are
taken with respect to the true mean.

Now, ordinarily, this kind of a departure can not he
tabulated, aceurately, because the mean value generally
ends in a iong decimal which it is impracticable to retain
in the computations. Nevertheless whatever part of the
mean is rejected causes the sum of the squares to be too
large. Fortunately the exact value of the excess can be
easily found so that in practice it is more convenient to
select some arbitrary number, generally near the mean,
and form the departures with respect to this value, The
minimum sum of squares can then be casily found, as also
the exact value of the mean,

Obviously, we need some convenient nomenclature to
indicate to the eye whether, for example, a given sum
of squares, as also other related quantitics, is based on
departures from the true mean or from some arbitrary
reference number. We propose to adopt the following:

=z, 2%, Szy, etc., designate the sums of the quantities
represented by z, z*, zy, etc., when departures are caleu-
lated from the true mean.

[x], [#7], [zy], will indicate the sums of departures taken
from some arbitrary number.

We now need to know the relation between Sx* and [2?].
According to Yule ** and other authorities this relation
is indicated in the customary equation for the standard
deviation, which may be written thus in our notation:

om[EETE
n

in which d is the difference hetween the true mean and
the base or reference number used in forming the depar-
tures. While mathematically exact this form of the
equation for o is faulty and troublesome from the com-
puter’s point of view, because the term d* can not be
accurately computed by squaring d unless the latter is
(-.ompute,({ with more significant tigures than is otherwise
necessary. The remedy for this is found by stating the
equation in the following identical form:

o B

(] —=

n

where [z]? is the algebraic sum of the departures squared.
Ordinarily this sum will be computed any way as a check
on the work. It will generally }{)e a small number whose
square can be exactly computed, as also the quotient
[.::Hz/n, thus giving with the least amount of work the
minimum sum of squares Zz?=[1*]— [z]*/n. All the work
is shown in Table 2. If A is the approximate mean or
base number, the true mean 4 is fouml from the following
equation:
A= M-[zl/n

In the present example the quantity .4 has no special
significance in connection with the temperature data
because of the manner in which the departures were taken.
It does, however, indicate that the normal curve of best

12 e‘lgule, Q. U. Introduction to the theory of statisties. p. 135, equation (4) trans-
pos

71164—17—2
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fit is shifted by 0.0506° toward the positive side of the
axis Y, and that the departures were taken from very
nearly the true mean.

TABLE 2.—Fresno-Springfield temperature departure dala.
[Degrees Fahrenheit.)

Departures, . Number, y. 22, V. ny.
~22, 1 484 -~ 22 484
-0, 2 400 — 40
-19. 2 361 — 38 721
—18.. 2 324 — 36 648
L T 1 256 — 16 256
. T 2 225 — 30 450
e 5 10 198 ~140 1960
e L 5 169 — 65 8§45
—12 (] 144 - 72 864
—11. 8 121 — 88 968
—10. 18 100 —180 1800
-~ 9. 11 81 - 891
- S 18 64 —144 1152
- 7 ............ 25 49 —175 1225
L 33 36 —225 1368
T e iraeieiiemiaceeeenaranans 34 25 -170 5
el LT, 39 16 —156 624
- 51 9 —153 459
- 31 4 — 62 124
— 46 1 — 46 46
+ 1 O e
+ 41 1 + 41 41
35 4 72 144
................. 46 9 138 414
................. 33 16 132 528
.............. 34 25 170 850
.................... 29 36 174 1044
29 49 203 1421
28 64 200 1600
15 81 135 1215
11 100 110 1100
9 121 99 1081
144 a 1152
................... 15 169 195
.............. 2 198 2 302
.................... 1 258 16
4 259 68 1156
3 324 54
1 400 20 400
529 46 1058
Positive departures.............. 344 33804
Zero departures. ................. . R
Negative departures. ...c..ccoceameeen 350 ..ol —1960 |............
Total..ueeieiumaraincnnmcennenen n=[y]="131 [13y]=33894
[xv] -
= +0.0506.
. . (37)?
Minimum sum of squares=33894— 5 =33892.13.
. . 33892.13
Standard deviation =¢== .\/ Y 6.809.
[]

The final result of the analysis of the Springfield—
Fresno temperature data, assuming that the same law ap-
lies to hoth stations, is the frequency law given by the
ollowing
o (standard deviation)=6.809°F.

and by substituting ¢ in (5) we have
(15)

For easy calculation of values of y the equation (15)
may be put in the form

i (frequency of departures) =12.83¢—0.0107832%,

log ¥=1.6374—0.004683* (16)
whence the following values of x and y are derived:
Teomeeeieeeenennas 0 3 5 7 10 15 20 25
Veeemeemeeeneanes 2.5 359 i 3.7 252 147, 38| 06{ 005

We wish to know how muech confidence may be placed
in these final results. This is ascertained by computing
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the probable error ¥ of the standard deviation, which
turns out o=6.809°0.12°. This indicates that when
the departures do not differ greatly from the standard
deviation the results obtained from (15) or (16) are not
likely to be more than 429 in error.

The student must cateh the significance of the values
of y computed by means of (16). According to these data
the temperatures will he the same as the normal for the
day on 42.8 days out of 731, i. e., a period of two years
(one a leap year). It will go 3 degrees above or helow
the normal 30 times. The departure will be + 15 degrees
on less than 4 days in these two yvears. Half of all the de-
partures will be above and half will he below the value of the
probable departure !* which will be 0.6745 0 =4.50°. The
table shows 360 out of 731 values between +4 und —4
degrees, a slight excess over the number called for by the
curve, but still a close agreement. Suppose we wish to
know the percentage of departures that will exceed, say
10, 15, ete. degrees? Questions of this kind are readily
answered by reference to a table of the probability inte-
gral. Davenport’s Table IV gives, for the entry 10/e=
1.47°, the value 0.42922, which represents the half area of
the probability curve out to o= + 10 degrees.  The arca
of half the curve is 0.50000, therefore the portion heyond
z=+10 will be 0.071. An equal extension will lie be-
yond z= — 10, hence the percentage of departures heyoud
+10 degrees will be 2> 0.071=114%. The pereentage
beyond 15 degrees will be 2.89,. These results indicate
that about 119, of the departures will have values be-
tween 10 and 15 degrees.

The foregoing can not be stated as povitive facts con-
cerning Fresno and Springtield climutes, because the data
were not sufficiently representative to justify positive
statenients, but the examples serve to illustrate how such
results can he obtained by aceurate mathematical
methods. Moreover, we have the satisfaction of know-
ing that frequency curves, when proparly dedneed in the
manner indicated even from seemingly irregular and in-
sufficient data, nevertheless express a detimite low of oc-
currence of deviations that not only fits the data em-
ployed the best possible, but is the general law to which
the data will conform more and more closely as the length
of the records is prolonged and the nuniber of observa-
tions multiplied.

Problem I1.

To find the constants of the equation of the straight line
of best fit to the data in Prof. Smith's exaniple, figure 10,
oiving the relation between July rainfall for the States of
Tndiana, Illinois, Towa, and Missouri. Let y= vield of corn
per acre for this territory and » the July rainfall. These
data give a series of observation equations for a straight
line of the type

y=a+hr,

and our problem is to determine the hest or most probable
values of @ and 4. The data and computations are given
in Table 38, and figure 10 shows the data in graphic form.
A few of the observation ecuations may be written thus:

34=a+3.9b
33=a+4.6b
26=a+2.20
* k K x ¥
31=a+6.8b

18 Davenport, C. B. Statistical methods, 1914, p. 16,  Eg=+0.67450/+/20-
14 See above under * Probuble error,” p. 557.
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There will be in all 28 equations and, according to the
methods of least squares, the most probable values of 4
and b are given by the solution of two normal equations.’®

Rule.—The normal equation for « is formed hy multi-
plying each observation equation by the coeflicient of a
(with its proper sign) in that equation. The sum of the
resulting equations s the normal equation for a.

Likewise the normal equation for 6 is formed by
nmultiplying each observation equation by the coefficient
of b in that equation. The sum of the resulting equations
is the normal equation for b.

The two normal equations thus obtained are simulta-
neous equations and their solution gives the most probable
values of ¢ and b.

Carrying out the operations indicated the normal
equations may be written in this form—

Zy =na-+b2r
Sry=aZr+bIr

These equations give N

_ -n.(_Er_l/) —(=r (E!Q:

= L 2.027
n(ZE) = (r)? /

When & is found,

Sy—biZr) .
=L < 04,07

In these equations Sr is the sum of the rainfall and =y
the sum of the yields. Zry is the sum of the products,
rainfall by yield, and r? is the sum of the squares of the
rainfall. These values ave similar to quantities that
require to be computed in forming the correlation coeffi-
cient and the non-mathematical student does not need to
know lLow to deduce all the equations, but simply to be
able to perform the computations shown in Table 3.

TaBLE 3.—July rainfall and yield of corn for the States of Towa, Missouri,
Itlinois, and Indiuna,

Year. Rain, 7. | Yield, y. gl T Computation.
Inches. I.Bu.p.ru-.
3.9 34 15.21 132.6
4.6 33| 2L.16] 15LS
22 25 4.54 57.2
3.0 34 92.00 | 102.0
. 14 2 19.30| 122
3 5 00 S4.0
15 2 2.25 w0 el v
47 35| o9 1645 'Qy':sg's 1
07 351 aese| 235 -
3.3 | s A7 Shoiase
gg :312 1295 115.2 Sry=3,581.
X: 3 12,96 118.3 SN
18 3B Woi| 10 R s
2.0 19 4.00 38,0
g_ g 3.,. 29,16 1998 R(Sry)=10),293.2
3. 1 1444 117.8
1.2 32 17.64 1344 | p100.243.2-97,555
5.0 k) 25.00 190.0 13,231.68—11,881
_ 2782
3.0 37 9.00 Lo iz~ 2027
g.g ;g 31.33 184.8 o
3. 10. 99,0 e
4.7 36| 2209 10z | o=SB=ZNHS_ 674057
46 37| 216) 12 = =
2107
2.6 32 6.7 $3.2
4.0 30 16.00 156.0
2.5 2 6.7 754
21 29 4,41 58.%
0.8 31: 45.2¢4) 210.8
109.0 805 | 472.50 | 3,589

1B Merriman. Methods of least squares.

New Yurk, 1915. par. 48.
Comstock. Method of least syuares.

Boston. 1889¢, pp. 19 and 23.
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The equation of the straight line that best fits the data
of Table 3 and represents the relation between the yield
of corn and the July rainfall is

Yy =24.07 +2.03r.

This equation indicates that if » is 1, y=24.07
+2.03=26. If »r=6, y=24.07+12.16=36. Two points
like these suffice to locate the line of best fit on the dia-
gram, figure 10, as at y, and ,.

The coeflicient +2.03 means that each inch of inerease
in July rainfall will add 2.03 bushels per acre to the yield
of corn in the States considered. It must hbe understood,
of course, that the law of relation represented by the
equation is purely an arbitrary one and applies only to
conditions within the range of the records discussed.
Moreover the relation is only approximate, as is shown by
the comparatively widely scattered distribution of the
dots in figure 10. Obviously other factors than rainfall
influence the yield and should be considered, but the line
found by the foregoing method is, in a sense, a first ap-
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the observations were made at the old office near 17th
and G streets NW., and after 1889 at the present office
at 24th and M streets NW. The data were first analyvzed
in two groups corresponding to the locations of the office;
and finally treated as a whole independent of location,
sinee there is no evidence of any systematie difference
acconipanying the removal of the office.

Table 4 gives the number of times (y,) that the various
minimum temperatures were observed in the whole period
of 44 years, as also for the separate intervals of 17 years
in the old loeation and 27 years in the present position.

In figure 18 the three groups of data are shown reduced
to a 10-vear basis of rcmr«l, including the normal fre-
quency curve of hest fit for the whole series. The
aeparate curves for the two groups of data, old and new
office, differ too little from the one for the whole period
to justify drawing them in, but the corresponding
ordinates for all the curves are given in Table 4.

TABLE +.—Computed values of y, for temperature duta, 10-year basis.

proximation in the discovery of the relations between the o | New | Com.
statistical data considered and is identical, although oftice. | office. | bined.
expressed in different units of measurements, with the
line defined by the correlation coefficient, r=0.61, rar] 1% Lo
: 13.00 14.12 13.58
previously found. 12:13 | 1300 12.58
Problem III. a2 12.2 1L
.. . .. 7.46 | 7.2 7.39
Variation in December minimum temperatures at 2| 30 3.3
Washington, D. C., 1872 to 1915, inclusive. These data 03| 0.2 028
afford an instructive illustration of the application of the bor) o 0.08 o0
methods of statistics to climatology. From 1872 to 1888
24
23
221,
21 2
20
19
18 o
17
OBSERVATIONS IN OLD OFFICE ----------- . © = .
16 ~ OBSERVATIONS N NEW OFFICE - ® .
15 COMBINED DATA---+--rerscrreeees |
NORMAL CURVE OF BEST FIT------~----- ——
14 3 = -
1 -
3 / p
12 P
JAILIl L .
11 Ll :
10 :
o .
/M B
8 g
ele o f [
7 r © ©
r-3 / cx .
o 2]
s o
. o
3 ) - \
R i o\ .o©
2 s} - ] y
1 .12 - '
] [} [ [ ] - LA ) e
oL m n . 5
a5 40 35 30 25 20 15 10 5 ) 5 10 15 20 25 30

Fig. 18. The departures, above and Lelow 30° F., of minimum temperatures of Washington, D. C., for DecemUlier, 1872 to 1915. Also normal frequency curve of best fit.
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The results of the calculation of the frequency curves,
resented in Table 5, show the close agreement in the
ata.

TABLE 5
; !
: Preponderance of even
Average i X temperatures.
minimum; Stand- {proroo !
. tempera-: ard de- I et jr—m———— s — ——m -
Series. ture, | viatiom, | (3rE- ! !
Decem > tion, . FEven Odd 1 pa,
b?:- 3 | temperu- | tempera- | cexelt
: 7. §o. | ture ture. i -
I
o o i ’
0ld office, 17 years....... 28.6 9.29 6.2 325 201 1.62
New office, 27 years....... 25.6 8.52 5.7 . 466 371 1.26
Whole series, 44 years..... 25.6 8.81 5.9 | 92 571 .39
1

Preponderance of even tem peratures.—A striking abnor-
mality consisting of the preponderance of eren tempera-
ture values is obvious from an inspection of figure 18,
This is likely to be characteristic of a large proportion of
meteorological data from which decimal fractions or un-
necessary digits have been disposed of according to the
customary rule.® The minimum temperatures in the
present case were read and recorded to the nearest tenth
of a degree, and the fractions were subsequently Jdisposed
of according to the well-known rule which changes all
readings enﬁing in 5 to a number ending in an eren digit.
The effect of this rule upon the frequency distribution is
to-cause all observed temperatures between, say 9.5° and
10.5% to be classified under 10° and, similarly, for any
other even value, whereas any odd temperature like 7°
comprises only the values betweem 6.6° and 7.4°. The
latter, that is the odd class, comprises nine values,
whereas the even class comprises 11 possible values.
On the strict theoretical basis there shonld he about 22
per cent more even readings than odd in a large group
of data subject to this cause of abnoriuality.

The last three columns in Table 5 show that the
preponderance of eren values considerably exceeds the
theoretical expectation. The probable explanation of
this excess is to be found in the faet that when the
observer should read the fraction 0.4 or 0.6 he neverthe-
less is prone to take off and record a frastion of 0.5.
This proneness of the observer to give preference to
readings ending in 0.5 also extends to readings ending
in zero tenths. No serious error of any kind arises from
this more or less inherent and systematic abnormality
except to give a distinct preponderance of cven values.
The cooperative observers of the Weather Bureau read
and record minimum temperatures only to the nearest
whole degree, so that excess of even values should not be
expected in such records. The December observations
for 20 years at a cooperative station ncar Washington,
have been tabulated and it is found there are 307 even
values and 303 odd ones. Ten readings were niissing,.
The approach to equality is here quite as close as can be
expected.

A method of equalizing the distribution and elimi-
nating the abnormality due to the preponderance of
even values is indicated in Table 6. The equations- of
adjustment are:

B=a+2b +e¢

C =Db+ 2 +d,

D=c+ 2d + e,
ete.

16 The Weather Burean rule for disposing of decimals is given in its ¢ Instructions for
preparinf meteorological forms,” § 123, and reads as follows:

123, In dropping decimals, if the figure to he dropped is greater than 5 (or 5 with a
remainder) the preceding figure will .0 increased by 1. If the decimal figure to Le
dropped is 5 exactly, the preceding figure when vdd will be increased by 1, and when even
it will remain un
figure uachanged.”

. Ifthe figure to bo dropped is less than 5, retain the preceding
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TaBLE 6.—Illustrating elimination of abnormalily due to preponderance
of even values of data.

Frequency.
Range in
Class. class.
Observed. | Equalized.
4 11 a=10 A=10
5 9 b=20 B=2§
6 11 c= 8 C =18
7 9 d=2 D =27
8 11 e =15 E =37
9 =35 F =32
10 11 g=7 G =19
11 9 h=20 H=17
12 1 i=o0 I=0

The equalized frequencies each comprise 40 elements,
or we may regard them each as four times the true ad-
justed values.  Fractions will be introduced, however, if
we divide by 4, and for easy and accurate computation
it will generally he hest to use the adjusted values di-
rectly and divide by 4 at the end of the computation,
if desired.

The whole series of December minimum temperatures
for Washington were equalized for odd and even values
by the rulo mentioned above with the result:

Ezen. 0dd. Tolal,
Dataastabulated. . ... . ... ...... 792 571 1363
Dataasadjusted. ... .l 2726 2726 5452

Probalility of a given departure—Among the useful de-
ductions to be drawn from the mathematical analysis of
the mimimum temperature data of Problem IIT are the
probahilities of occwrrence of given dopartures, or
departures between certain limits. Some such results
are given in Table 7, which is constructed from tables of
the probability integral.

TaBLE 7.—Number of days in 100 years on which the December mimimum
temperature al Taskington, D. C.. will differ from 28.G° by certain
amounts.

[Bazed on 41 years® record. Standard deviation ¢ = 8.85°]

=l =l=]=i=lz]=

Vo< = < ER D by

Departure. [ - > > P >

v i P TN LN FS TN PR LS. 1L PR U LR I 1A
; I | |

N i0.563 | 0,503 | 1,126 | 1,639 | 2,232 | 2.815 3.37% | 3.941 | 4.505

Number of days..... | 1,322 { 1,778 S07 I 83 | 75. 4 i 151 2.26 | 0.251 0.02
! ! |

An examination of the original data shows that no plus
departure in excess of 30° has occurred, but, on the other
hand, two negative departures oxceeding 30° have
occurred in the 44 years comprised by the record. Fur-
thermore, a eritical examination of figure 18 clearly indi-
cates that the positive and negative departures are not
equal in number or strictly symmetrical in arrangement.
For the best results, therefore, we require an unsym-
metrical type of curve, such as some of the types proposed
by Pearson. Mr. Howard R. Tolley, of the Office of Farm
Management, has recently developed a relatively simple
modification of the normal frequency equation not yet
described and published,'” that is appropriate for repre-
senting the moderately unsymmetric‘ll) or skew frequency
distributions likely to be found in the analysis of nearly
all climatic data.

The discussion of unsymmetrical distributions, however,
can not be included in the present paper and must be
reserved for later presentation. It may be appropriate,
howevér, to point out here that systematic and consist-
ent lack of symmetry of a frequency distribution indi-

17 To appear in this REVIEW for November, 1916.
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cates that some one or more influences are acting which
tend to make deviations of a particular kind or class to
preponderate. The thing to do, therefore, is to discover
and eliminate the preponderating influence. This pro-
cedure should ultimately suffice to reduce all distribu-
tions simply to the normal error curve of hest fit.

Example IV.

Practical calculation of cocfficient of correlation, using
data in Example II on the relation between July rainfall
for the States of Indiana, Illinois, Iowa, and Missouri,
and the yield of corn per acre.

Table 8 gives tho data and the computations in full.
In the case of the rainfall the departures are computed
from the arbitrary number 4.0, am‘% 32 is an arbitrary baso
number used in tabulating the variations in yield of corn.

As already explained on page 563 in the practical calcu-
lation of the standard deviation, the use of the arbitrary
base numbers causes tho sums of the squares to he too
large. The sum of the products represented by ry is also
too large for the same reason. It was shown that the
minimum sum of squares is given by the equation

2
Zpt=[2%]— [=] .
n

TasLE 8.—Coefficient of correlation between July rainfall in Indinna,
Illinois, Iowa, and Missouri and the yield of corn per acre.

[By J. Warren 8mith.]

Rainfall. Yield of eorn.
. Depar- a - Depar—i "
Year, T lture,z| T Y ture, y. ¥ . i
1
Inches. Bushels,
3.9} —0.1 0.01 34 - 2 4 — 0.2
461} + 0.8 0.36 33 + 1 1|+ 0.8
2.2, - 18 3.24 2 -4 36 | + 10.8
30( - 1.0 1.00 31 + 2 4| — 2.0
4.4+ 0.4 0.16 2% — 4 Ih | — 1.6
3.0 — 10 1.0 2% — 4 16| + 4.0
1.5| - 2.5 6,23 24 -8 | 4+ 20,0
4.7 4+ 0.7 [ 35 -+ 3 9]+ 1
6.7 + 2.7 .20 35 + 3 9+ N1
3.3 — 0.7 0.49 29 -3 94+ 2.1
3.6 — 0.4 .18 2 + 0 [ 3 P
3.6 — 0.4 0.14 33 + 1 1] — 04
4.5 + 0.8 0.1 35 + 3 9l + 24
20| - 20 4.00 19 —13 | 169, + 26.0
a4+ 1.4 1.9 37 + 5 3%+ 7.0
3.8 —0.2 0.4 31 -1 1 i + 0.2
12| +02] 004 32{ +0 0. ...
50+ Lof 100 38| F6l 3.+ 6o
30|l—10f LOO 37| +5| 251 — a0
56| + L6 2.56 33 + 1 L, + L4
33(—-07 0. 49 30 -2 1|+ 1.4
47|+ 0.7 0.49 3 + 4 ml 4+ 2.8
4.6 + 0.6 .36 37 + 4 251 + 3.0
2.6, — 1.4 1.96 |) 32 + 0 [ R
1.0 £ 0.0 05 34 + 7 14
28| — 1.4 LR 29 — 3 a9
2.1: — 1.9 3.61 25 -1 16
6.8 + 2.8 T8 31 -1 1
—18.5 [........ R L N P
+13.5 | 48.58 +48 Hh0
E ) P —~ 3.0 [eeaenafba oL — 1 ]......
BSONO. = 4.0, 00 i it aeie e e eaaas 32
Mean=4.04+52=3.80 1. ior i eimiiaiicecacceaanns =32+[—£=31_9-:j

In a similar manner, using the symhols explained on
page 563, the exact value of the sum of the products, ey,
may be found from the computed sum by t-]ho following
equation:

[xily]

Zry =[zyl—=,
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Accordingly, we have the following formule for com-
putation of the coeflicient of correlation:

Standard deviation (rainfall),

o L&
== ‘/43.239
O == n = 9%

=1.313 inches.

o

Standard deviation (vield of corn),

[ — [—”,%3

554.96
oy = - =\/ ”;S— ? =4.452 bushels.
Lol = Ll;p][”] 3.403
‘oe 10 A Orreld 1 l=_.___—’__=..:__L= L; 8.
Coeflicient of correlation, r ey 5516 +0.59
1

102

Jn

That i3, r= +0.6040.12, which magnitudes represent
a fairly close order of correlation in problems of this char-
acter.

_ The equation of the straight line defined by the coeffi-
cient of correlation and expressing the direct influence of
rainfall on the yield of corn as shown by the data analyzed
is:

Probable error of coelficient =E, = +0.6745

The cooflicient of x thus found, viz, 2.027, is identical
with the one obtsined in the direct least square compu-
tation, namely b, page 564, This agreement not only
checks exactly all the arithmetical work, but shows the
mathematical identity of the two metheds of anulysis.

The origin of coordinates for the line given by the
equation 4=2.027r, is the point defined by the mean
value of rainfald, viz, 3.89 inches, and the mean yield,
viz, 31.96 bushels. The new axes are dotted infigure 10,

Variation of rainfall above and below the mean should,
according to the indications of the data analyzed, be
accompanicd by corresponding changes of tha yield above
and below the avorage yvield and in the proportion of 2.03
hushels of corn for each inch of July rainfall.

SUMMARY AND CONCLUSION.

I am indebted to Mr. William G. Reed for an interesting
memorandum on the origin and history of the correlation
coeflicient and a short hibliography of a number of pub-
lications dealing with correlatio:n and the theory of sta-
tistics. A portion of this is given in the note at the end.
Some titles have also been added to the bibliography.

An effort has heen made in this paper to outline in a
genioral way the essential principles of the mothods of
least squarces and the theories of statistics and correla-
tion, with reference to their application in the analyses
and preseatation of climatic data and their utilization
in the solution of problems of agricultural metoorology.
While a .r-.onsi«'le_erzﬂ)se knowledge of mathematics is essen-
tial to a complete mastery of all the methods, processes
and relations, nevertheless an elementary knowledge and
o little study are sufficient to enable any one to carry
out the relatively simple routine and systematized cal-
culations that are nccessary to bring out all the facts.
Examples of these computations have been shown with
considerable and seemingly all necessary fullness.
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It is hoped the presentation will awaken interest in
these valauble agencics and lead to their far greater appli-
cation in climatic and agricultural studies. Such appli-
cations seem to be full of promise, and meteorologists
can not afford to neglect, reject, or discredit cither the
methods or tho results of the kind of studies herein
considered.

It may seem at fivst thought that data is inadequate,
A closer study indicates that lack of data is not neces-
sarily a serious limitation. A record at a single station
may be inadequate, but the meteorologist now hus avail-
able an enormous mass of statistics which, properly
grouped and combined, leaves little to be desired in fix-
ing the general laws of variations and relations.

LITERATURE ON CORRELATION.

“The fundamental theorems of correlation were for
the first time and almost exhaustively discussed by A.
Bravais * more than half a century ago. He deals
completely with the correlation of two and three vari-
ables. Forty years later Mr. J. D. Hamilton Dickson *®
dealt with a special problem proposed to him by Mr,
Galton, and reached on a somewhat narrow hasis some of
Bravais' results for corrclation of two wvariables. Mr.
Galton at the same time introduced an improved notation
which may be summed up in the ‘Galton function’ or
coefficient of correlation. This indeed appears in
Bravais’ work, but a single symbol is not used for it.
In 1892 Prof. Edgeworth, also unconscious of Bravais’
memoir, dealt in a paper on ‘Correlated Averages’ with
correlation for three variables.®® He obtained results
identical with Bravais’, although expressed in terms of
‘Galton’s functions’’".*

The following publications contain complete state-
ments of the later developments and bibliographics are
given where it is so indicated.
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INJUORY TO VEGETATION RESULTING FROM CLIMATIC
CONDITIONS.!

By GEORGE Epwarp Stone, Ph. D., Professor of Botany.

{Address: Massachusetts Agricultural College, Amherst, Mass.]

Nearly every winter furnishes conditions which are
responsible for more or less injury to vegetation of both
native and exotic species. During the past decade a vast
amount of damage due to extreme conditions has resulted
to vegetation, especially in the northeastern States.
There has probably been no period within the memory of
living men, or for that matter within the period of exact
meteorological records, when damage to vegetation in
America has been more extensive than during the past 12
years or since the winter of 1904. Every meteorological

actor has its specific influence on vegetation, hut since
some of these influences are so intimately related to
certain types of injury we will {sic] deal only with those
concerned in the so-called winter injury. The principal
meteorological factors associated with winter-killing and
allied phenomena are temperature, soil and air moisture,
wind, and light.

Either high or low temperatures or too much or too
little soil moisture are conducive to abnormal conditions
in plants; also the amount and intensity of light and the
movements of the air form important factors in respect to
this. Both winds and sunlight have a marked effect on
transpiration, even sunlight alone greatly accelerating
this process. Therefore, for a correct understanding of
the cause underlying in{ury to vegetation from climatic
conditions, it is essential to have some conception of the
relative importance of meteorological agencies on plant
development and the role which they play in regard to
susceptibility to various troubles.

Some of the conditions which underlie winter-killing are
as follows:

Severe and Yrolonged cold, causing frost to penetrate
to a great depth.

Sudden and severe cold following a prolonged warm
spell in the Fall, in which case the wood tissue may be
tender and immature.

All conditions which favor a soft growth and unmmatu-
rity of wood. Various causes may be responsible for this,
such as growth in a low, moist soil, too heavy manuring
or fertilization, or absence of sufficient sunlight.

General low vitality, caused by insect pests and fun-
gous diseases and by lack of moisture in the soil.

1 Reprinted from Jour., New York botan. garden, Oct. 1916, No, 202, 17:173~179.

MONTHLY WEATHER REVIEW.

569

Insufficient soil covering, such as lack of organic matter,
light mulching and thin snow covering in winter.

Location in unusually windy and exposed places, ete.

A summer drought followed by copious rains during the
Fall is often responsible for the production of immature
tissue susceptible to cold.

Plants growing in the drainage of cesspools are likely to
be affected by cold owing to the production of unripened
wood.

Many of our introduced species are quite tender and
are likely to be affected more or less every winter by
severe cold. The buds of peach trees are generally
affected by cold in the northern States and such plants
as the privet, Japanese maples, etc., are affected by
ordinary cold. On the other haund, plants that are
native further north, such as the Labrador tea, frequently
suffer some winter injury in our latitude when grown out
of their natural environments. Swamp specles trans-
planted to rclatively dry soil suffer more from drought
and low winter temperatures than those grown in their
normal habitat. Many native plauts are winter-killed
badly when on the north side of buildings where light is
insufficient, because in such situations the wood fails to
mature properly. On the other hand, some southern
species of plants, such as the magnolias, are more hardy
in the north than ure some of our native species. Indeed
the renson why the magnolias do not grow more abun-
dantly in the north is apparently not connected with
temperature requirenients.

Some injury to vegetation is generally caused by snow
and ice, and this aside from that which occurs froimn the
overloading of branchies, The leaves of the lower
branches of various eonifers are often killed when buried
in snow banks and the leaves of arbutus are commonly
sun-scorched from exposure to winter snows and ice.

The injuries resulting to vegetation induced by metcoro-
logical conditions can be conveniently placed under two
different categories, namely, injury to the root system
and injury to the acrial portion of the plant, to limbs,
branches, and leaves. Injuries which oceur to a plant
above the surface of the ground and which are associated
with meteorological agenecics are *frost cracks,” ‘‘sun-
scald,” “sun-scorch,” and ** bronzing."”

FROST-CRACKS,

** Frost-cracks”’ are formed in winter and are due to
extreme changes in temperature within the tissues and
occur on those portions of the tree where the maximum
amount of hent is developed, namely, on the southwest
side of the tree. Since the maximum amount of heat
derived from sunshine is received generally between 2
and 3 p. m., that portion of a tree-trunk coinciding with
the direct rays of the sun at this period is the one most
likely to be affected on” a day of uniform clearness.
Moreover, the location of frost-cracks on i tree coincides
with that area giving the minimum electrical resistance,
and since the electrical resistance of a tree is proportional
to the temperatures of the tissue comprising the same-—
the lower electrical resistance corresponding with the
higher temperaturcs—that portion of the tree showing
the least clectrieal resistance is most susceptible to frost-
crack.

The opening and closing of frost-cracks are very re-
sponsive to changes in the meteorological conditions,
they being influenced by variation in temperature, mols-
ture, and in barometric conditions. They open more in
winter than in summer, more under a dry than under a
moist atmosphere, and more during high than during



